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The Numerical Solution of Second-Order 
Boundary Value Problems on Nonuniform Meshes 

By Thomas A. Manteuffel and Andrew B. White, Jr. 

Abstract. In this paper, we examine the solution of second-order, scalar boundary value 
problems on nonuniform meshes. We show that certain commonly used difference schemes 
yield second-order accurate solutions despite the fact that their truncation error is of lower 
order. This result illuminates a limitation of the standard stability, consistency proof of 
convergence for difference schemes defined on nonuniform meshes. A technique of reducing 
centered-difference approximations of first-order systems to discretizations of the underlying 
scalar equation is developed. We treat both vertex-centered and cell-centered difference 
schemes and indicate how these results apply to partial differential equations on Cartesian 
product grids. 

1. Introduction. Much attention has been paid to the numerical solution of 
second-order differential equations on nonuniform meshes. To begin, we consider 
the solution of the linear, two-point boundary value problem 

(1.1) Y"/ + a(x)y' + b(x)y = f(x), x e (0,1), 

(1.2a) booy(O) + boly'(0) = b102 

(1.2b) bloy(l) + b1ly'(1) = b12 

through three-point (compact-as-possible in the sense of Kreiss [15]) difference 
schemes on a mesh {xi }'. The functions a, b, and f are assumed to be smooth. 
The standard mesh spacing will be written as Ai = - x i1I and we will denote a 
function evaluated at the mesh points by subscripts, yi, and the vector with these 
entries as Y. The ith component of Y may also be written (Y),. We will make liberal 
use of the generic constant C and of A = max{ Ai}. 

An example of such a difference scheme is that used by Pearson [21] in his classic 
work on singular perturbations and by Denny and Landis [5] and de Rivas [6] in 
their work on mesh-selection techniques. In this method, each term in (1.1) is 
approximated separately on the stencil (x - A1, x, x + A1+1). Approximations to 
the derivatives are 

2______ -2 2 Y 

(1.3a) K (AA , + Ai+1) A1A+ ,+l (Al + A/,)A I+ Y LYi1 J] 

=Y + 4(A\i+1 - A)Y"' + 0(A2), 
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(1.3b) L__(Al + Ai+ A1 -A , AI+i(Al + A+,) j)Y[+j1 
y' + IA A +1Y "' + 0(A3), 

where each term on the right-hand side of these equations is evaluated at x. 
Throughout, the "big 0 " notation is shorthand for terms bounded by CAP 

This difference scheme, applied to (1.1), can be written as 

(LV) 2 - aiA1 ()l + [2 + ai(Ai?l - A1) +blv 
hLV)i _ A ^+ + (V)i-l + [ ( i '+bj(V), A 1(A, + Al?1 [ A1A +l iJ 

(1.4) 2 +a A 
+ A (Ai (+A h1)(V)i+l=f, 

for i = 1,..., N - 1. Note that this is a familiar, second-order accurate difference 
scheme on a uniform mesh (cf. Isaacson and Keller [11]). As usual, the truncation 
error is defined by replacing V in (1.4) with the exact solution Y, 

(1.5) (Lhy)i = f. + (T)i 

In this particular case, expanding in a Taylor series about xi yields 

(1.6) (T)i = '(Al,1 - Aj)y + 0(A2) 

for i = 1,. .., N - 1. Notice that the truncation error is not second-order unless the 
mesh is almost uniform. 

The standard proof of convergence uses stability and consistency to imply 
convergence. In other words, given stability, a sufficient condition for second-order 
accuracy is that the truncation error be second-order. This is not a necessary 
condition, but it is a convenient and powerful tool. Many attempts have been made 
to derive schemes that are second-order accurate, i.e., yield second-order conver- 
gence in the maximum mesh size, on nonuniform meshes by forcing the truncation 
error to be second-order accurate. Consider, for example, the use of smoothly 
varying mesh functions. The notion of slowly varying meshes is natural in solving 
problems of this sort (cf. Chong [2], Hoffman [10]). Here the idea is to restrict the 
change in the mesh size so that 

(ta+l- Aj) = 0(A2). 

Clearly, then, both terms in the truncation error (1.6) will be second-order. A closely 
related scheme assumes that there exists a smooth mesh function, say g(s) E C2(0, 1), 
such that 

(1.7a) x,= g(si), i=0, .. ., N, 
(1.7b) si i/N, i=0,...,N. 

Such transformations have been discussed in various contexts by Ablow and 
Schechter [1], de Rivas [6], Davis and Flaherty [4], Hoffman [10], and White [24], 
among others. In our context, we need only note that 

(Ai)2 = [X As j(AS)2 [g'(Si)j2(AS)2, 
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and 

? 1- A= [x1?i - As2 '1 j(AS) = [g"(S1)](AS)2. 

Thus, the truncation error in (1.6) is now second order in As. 
Another method of producing second-order truncation error is the use of 

implicit-difference schemes for both ordinary and partial differential equations. Such 
methods have been studied by Osborne [20], Lynch and Rice [18], Doedel [7], Swartz 
[22], Ciment, Leventhal, and Weinberg [3], among others. We will illustrate these 
methods with a simple example that is due to Doedel. Instead of a difference 
approximation like (1.4), an extra degree of freedom is added by looking at 
equations of the form 

(1.8) aiv,-1 + f3ivi + Yivi+1 = f (Zi), 
where a,, f3i, y,, and z, are to be determined. Although the precise formulae are 
tedious to display, we note that if a,, fPi, and y, correspond to the second divided 
difference and zi = (xi-1 + xi + x,+1)/3, then (1.8) approximates y" = f(x) with 
truncation error that is O(z\2) for uniform and nonuniform meshes. 

We show in this paper that, for many common difference schemes, the accuracy is 
second-order in spite of first-order truncation error. The standard proof, although 
useful in its proper context, is inadequate to handle nonuniform meshes. We will 
develop new tools that are applicable to both uniform and nonuniform meshes. As a 
motivation, consider writing (1.1) as a pair of first-order equations, 

(1.9a) Y1 =Y2' 

(1.9b) Y2 = -a(x)y2 -b(x)yl + f (x), 

with appropriate boundary conditions. Keller [12] and Keller and White [13] have 
shown that centered-difference approximations of (1.9a,b) are second-order accurate 
under mild restrictions on the mesh. This approach has the additional advantages 
that its asymptotic error expansion proceeds in powers of (A i)2 and that approxima- 
tions to the derivative are just as accurate as those to the solution itself. 

In Section 2, we begin our study by looking more closely at the solution of 
(1.9a,b) by centered differences. In the resulting linear system of equations, the 
unknowns Y2 can be eliminated in such a way as to yield a compact-as-possible 
difference scheme for the unknowns Y1. Like (1.6), the truncation error is first-order. 
However, we know that the accuracy is second-order because it is also the solution 
of the system (1.9a,b). The reduction procedure is examined to illuminate this 
apparent paradox. A simple result is proved that provides the basis for the 
remainder of the paper. 

In Section 3, we prove that many difference approximations of (1.1) and (1.2a,b) 
yield second-order accurate solutions, even though their truncation errors are 
formally first-order on general nonuniform meshes. As an example, we look at (1.4) 
and show that no new requirements on the mesh, X, are necessary to ensure 
second-order accuracy. Several numerical examples will be given to illustrate this 
result. In Section 4, these results are extended to quasilinear problems. Section 5 
examines these problems for cell-centered difference schemes, and we will discover 
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that these schemes are not nearly as forgiving on nonuniform meshes as are 
vertex-centered methods. Section 6 contains some concluding remarks. 

This work, although approached from a completely different direction, is, in part, 
a rediscovery of the results of Tikhonov and Samarskii [23], whose paper seems to be 
little appreciated. We are indebted to David Levermore [17] for calling it to our 
attention. A related approach, generalized to compact schemes for nonselfadjoint or 
higher-order equations, invokes summation by parts-see, e.g., Kreiss, Manteuffel, 
Swartz, Wendroff, and White [16]. The work of Grigorieff [9] addresses similar 
issues. A Spijker norm is used and in this weaker norm, the truncation error is 
second-order. The difficulty in this approach comes in proving stability. The proofs 
presented in our paper are elementary and are motivated through the section on 
first-order systems. The techniques employed here have application to a wide variety 
of problems not previously addressed. 

2. First-Order Systems of Equations. As we noted in Section 1, the differential 
equation (1.1) can be rewritten as a pair of first-order differential equations and 
approximated by centered differences. This system will have second-order truncation 
error, and thus second-order accuracy, on a nonuniform mesh. In order to examine 
this procedure in detail, it will be sufficient to consider the simple problem 

(2.1) Y" = f(x). 
One equivalent first-order system is given by the pair of equations 

(2.2a) y1'(x) Y2(X), 

(2.2b) Y2(X) f J(x), 

where y1(x) = y(x) and y2(x) = y'(x). Keller [12] has shown that it is easy to 
construct a second-order accurate solution of (2.2a,b) using centered-difference 
approximations, 

(2.3a) IV [Vi- vjl] [wi + wi_l], i 19 1. .., N; (2.3a)~~~~~~ 

(2.3b) -W wi-11] =f(xi-112) (F)j, i = 1,...,N. 

We may rewrite these equations by defining an (N x N + 1)-difference matrix 

_ 1 1 

A1 A1 

(2.4a) Do 1 1 

A2 A2 

and an (N x N + 1)-average matrix 

2 2 

(2.4b) AO- = I 1 
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With these definitions, Eqs. (2.3a,b) become 

(2.5a) DOV = AoW, 

(2.5b) DoW= F. 
For simplicity, consider Dirichlet boundary conditions appended to (2.1); the 
discrete approximations are given by 

(2.6) vo = bO2, VN = b12. 

Equations (2.5a,b) and (2.6) form a system of (2N + 2) equations involving the 
(2 N + 2) unknowns, V and W. 

Keller [12] proved the following theorem specialized to our example. 

THEOREM 2.1. Let f(x) E C2(a, b); then for all quasi-uniform meshes, 

(2.7) A maxv < 2A min, 

with \ max < AO o AO sufficiently small, a unique solution of the discrete boundary value 
problem (2.5a,b) and (2.6) exists and has the property that 

(2.8) [1(xi) -vi < C\m. 

Proof. The proof is through the usual stability, consistency arguments. The 
truncation error for (2.3a,b) is found in the usual way by replacing vi and wi in 
(2.3a,b) with y1(xi) and y2(xi), respectively. In the form of (2.5a,b), we have 

(2.9a) DoY1 = AOY2 + T1, 

(2.9b) DOY2 = F + T2, 

where a liberal dose of Taylor's series yields 

(2 .10a) ( T1 ), =-r y12 "iyl'(Xi-1/2) + O(z^ )' 

(2.10b) (T2)i = -24i1"(Xi-12) + O(/\ ) 

Stability will now yield Theorem 2.1. O 
However, we can reduce the (2N + 2) equations (2.5a,b) and (2.6) to (N + 1) 

equations by eliminating W, thus deriving a difference approximation to the original 
second-order equation, (2.1). If the reduction is done carefully, the new difference 
scheme will be a three-point scheme and the boundary conditions will remain 
unaffected. To accomplish this, we define another difference matrix, 

2 2 

Al + 2 Al + 2 

(2.11a) Di- 2 2 , 
A2?+3 2?+A3 

and another average matrix, 

A1 + ?2 A1 + ?2 

(2.11b) A1 /\ 2A__3 

A2 + ?3 A2 + ?3 
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where both matrices are (N - 1) x N. Recalling (2.4a,b), it can be shown that 

(2.12) AlDo = DlA0. 

If we left-multiply (2.5a) by D1, left-multiply (2.5b) by A1, envoke (2.12), and add 
the equations, we have 

(2.13) DlD0V = A1F, 

where DDo- D2 is the second divided-difference operator as defined in (1.3a). 
The truncation error associated with (2.13) can be derived in two equivalent ways. 

Replacing V in (2.13) by the exact solution, Y1, in the usual fashion, we get 

(2.14) DlDOYl = A1F + T, 

where a Taylor's series expansion yields 

(2.15) (T)i = - *(Al+?1 - Aij)y " (Xi) + (M2). 

However, we may also derive the truncation error by repeating the reduction shown 
in Eqs. (2.12) and (2.13), and eliminating Y2 from (2.9a,b). This procedure yields 

(2.16) DlD0Yl = A1F + DIT1 + A1T'2. 

Thus, the truncation error, T, in (2.14) has the representation 

T= D1Tl + A1]T2. 

Recalling the expressions (2.10a,b), we see that A1T2 is o(l?2) because A1 is an 
averaging matrix. The term D1T1 provides the troublesome (L1,+1 - 1A,)-term in 
(2.15). 

The error equation is found by subtracting (2.13) from (2.16), which yields 

(2.17) DlDoE = DlTl + A1T2, 

where (E)i y(xi) - vi. Assuming stability of the difference scheme and ignoring 
boundary conditions, Eq. (2.17) yields an error estimate 

||E|Jo o CIID1T1I10 + ClIA1T211. 

Recalling (2.10a,b), we have 

(2.18a) |DlT 11 CmaxLAj+1 - Ai= O(A), 

(2.18b) |AT2 CmaxIA21 = Q(A2). 

From (2.17) we see that the error can be divided into two terms, E = E1 + E2, 
such that 

(2.19a) D1DoEl = DlT1, 

(2.19b) D1DoE2 = A1T2. 

The usual arguments applied to (2.19b) yield second-order accuracy. However, these 
same techniques applied to (2.19a), using (2.18a), give a poor approximation, i.e., El 
is O(LA), yet we know from Theorem 2.1 that the scheme is second-order accurate. A 
careful accounting of E1 must produce an estimate similar to (2.8). The following 
lemma examines the solution of (2.19a) and provides a key to many of the results in 
the following sections. 
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LEMMA 2.2. On any mesh, define an (N + 1)-vector, E1, by 

(2.20a) (El)o = 0, 

(2.20b) (E1)i = E A(T)1, i = 1, .. ., N. 
,j=l 

Then E1 is a solution of (2.19a). Further, 

(2.21a) || E1 Il0 < 11 T1 l0, 

(2.21b) | DOE, 1 o0 = 11 llo. 

Proof. Let us write (2.19a) as 

D1(DOE - T1) = 0. 

The quantity in parentheses must be in the null space of D1, that is, a constant 
vector that we shall denote as XI. The vector E1 must satisfy 

(2.22) DOE, = T1 + Xl. 

The components of this equation are 

(El)i = (El)i-l + Ai(Tl)i + XA, i = 1,..., N -1. 

Summing the right-hand side yields 

(EI)i = (El)o + L zj(Tl)1 + Xxi. 
j=1 

We are only interested in a particular solution of (2.19a) and so shall choose 
(El)o = X = 0, which yields (2.20a,b). The bound (2.21a) is derived by taking 
absolute values in (2.20b) to get 

l(El) i I < E, Ai 11 T1 11X0 < || T,1 |1t 
j=1 

Equality (2.21b) follows immediately from (2.22) with X = 0. a 
In the next section, we show that many truncation error expressions, like (2.15) 

and (1.6), can be rewritten in the form 
T = DIT1 + T2, 

where T1 and T2 are both second-order. Lemma 2.2 will then provide the means for 
showing that the solution error is second-order accurate in such cases. 

3. Linear Second-Order Equations. In Section 2, we saw that at least one 
difference scheme approximating the equation 

y" = f(x) 

with Dirichlet boundary conditions yields second-order accurate solutions on non- 
uniform meshes. In this section, we extend our discussion to linear second-order 
equations of the form (1.1) and (1.2a,b). Second-order accurate difference schemes 
for (1.1) can be constructed by forming an associated first-order system, discretizing 
with centered differences, and carefully eliminating the auxiliary unknowns as 
described in Section 2. More will be said about this and higher-order equations in a 
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subsequent paper. In this paper, we prove a result that will help to identify those 
three-point difference approximations to (1.1) and (1.2a,b) that are second-order 
accurate. 

We use the notation of Section 1, namely, 

(3.1) (LhV) i = (F) i, i = 1, ...,N -1, 

(3.2a) BOV= bo2, 

(3.2b) B1V= b12. 

The truncation error will be defined by replacing V with Y in (3.1) and (3.2a,b). 
Many difference schemes have the property that the truncation error can be 

divided into two parts, 

(3.3) T= T + 

where 

(3.4a) (T)O = (t) N = 0, 

(3.4b) (T1)i = ( -i+, - )P(X), i = 1,..., N - 1, 

for some function p(x) E C'(O, 1), and 

(3.4c) max. 

The next lemma will show that difference schemes of this type may be second-order 
accurate. 

LEMMA 3.1. Let the truncation error for a difference scheme (3.1) and (3.2a,b) 
satisfy (3.3) and (3.4a,b,c); then 

(3.5a) (T)o= (T2)0, 

(3.5b) (T) N = (T2) N' 

(3.5c) (T)i = (D1T1 + T2)1, i = 1 ..., N- 1, 

where T1 is an N-vector, T2 is an (N + 1)-vector, D1 is defined in (2.1la), and 

jIT1IjOO < CA2 jIT21100 , CA2M 

Proof. From (3.4b), note that 

(TO)i= p (Xi)-A M Ap (Xi) - =A1+1 
p( 

i+1 i 

The function p (x) is differentiable, so we can rewrite this expression as 

( 1) A _ +,[A\i+1P(Xi+112) 5ip (xi 1/2)] 

+ A1 +1 
P'(0i +P'0 

2(1i+l + Ai) 2(A?i+ + Ai) 

for some 4, and 42 e (xi-1, xi+,). Now, identify 

(3.6) (T1) _2ip(x_11/2), i= ... IN, 
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and 

(3.7) 2(i+l + Ai ) 
i = 1, ... I, - 1. 

With these definitions, we have proved (3.5a,b,c). If we recall that p(x) is continu- 
ously differentiable on [0, 1], then (3.6) implies that 

T, <max{Ip(x)I}~~ 
[0,1] 

with no constraints on the mesh. To complete the definition of T2, we take 

(T)O (T2)0 (T2)0, (T)N (T2)N (T2)N' 

A bound for (3.7) independent of the mesh is derived by noting that 

1 [A<'~ ~'~) max{ p'(x) }A2 
2(Ail + ?1'(0A i [ P) P() 

[0,1] 
max, 

Thus, again without any constraints on the mesh, we have 

IIT2 lloo 0 
CAmax C 

The hypothesis of Lemma 3.1, Eqs. (3.4a,b,c), is satisfied by many difference 
schemes. The second divided difference applied to y" yields 

(T)i = (Ai+1 - Ai)y"' + O(A2), i= 1,...,N -1. 

Consider several reasonable methods of approximating y'. If we take the difference 
of values at xi-, and xi+,, we have 

[~~~~ Ii I I 
(AiY/ _] 1iy,+OA 

[AL??l+ A, 
A 

+ Ai i+i2 
If we average function values on the left and right subintervals and take the 
difference of the averages, we have 

[ i~' d 2AF1][~Yl] + I(AiE+ Ai)y + 0( A2 

Recall that the approximation (1.3b) used in Pearson [21] is 

[LA?(LA + Ai)' A i 
- 

1 A1 + [y i] y + (A2). 
Aj+1(Aj+1 + Aj ][yi1?J 

Each of the functions on the right-hand sides of these truncation errors is evaluated 
at xi. Note that each scheme has a truncation error of the form (3.3), and that each 
of these approximations is the same on a uniform mesh. With Lemmas 2.2 and 3.1 in 
hand, we now examine the question of second-order accuracy for more general 
difference schemes. 

THEOREM 3.2. Let the difference scheme (3.1) and (3.2a,b) have the following 
properties: 

(i) the difference scheme is stable for all meshes in some class M with A a, < A(; 
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(ii) Lh = D2 + L1, where D2 is the second divided difference; and 
(iii) the truncation errors satisfy the hypothesis of Lemma 3.1 (Eqs. (3.3) and 

(3.4a,b,c)). 
Then, the error at the mesh points is bounded by 

(3.8) I|E|I o s< C [ || Ti || oc + II T2 10 + II RE1 1100i] 
where E1 is defined as in Lemma 2.2, T1 and T2 are defined in Lemma 3.1, and R is an 
(N + 1) x (N + 1)-matrix, 

(3.9a) (RV)o = (BoV)O, 

(3.9b) (RV)i = (L1V)i, i = 1,.. ., N- 1, 

(3.9c) (RV) N = (BlV)N. 

In other words, R is the difference operator without the second divided difference. 

Proof. The equations for the pointwise error, E, are 

(BoE)o = (T)o, 

([D2 + L1]E)1 = (T)j, i = 1,..., N -1, 

(BlE) N= (T)N. 

Recalling that D2 = D1D0, and using Lemma 3.1, we have 

(BoE)o = (T2)0, 

([D1Do + L1]E)i = (D1Tj)i + (T2)1, i = 1,..., N- 1, 

(BlE)N= (T2) N 

Let us define 

E = El + E2 I 

where E1 is as given in (2.20a,b). Then, because E1 satisfies DlDoEl = DlT1, we 
have 

(BOE2)0 = (T2)0 -(RE)o, 

(LhE2)= (T2)i -(REJ)i, i = 1,...,N -1, 

(BNE2)N= (T2)N-(REl)N. 

By hypothesis, the difference scheme is stable, which yields the estimate 

|| E21lloo, -< C(llT2 110 + 11 RE, 11 0) - 

Combining this with the bound for E1 found in Lemma 2.2 yields 

11 E 11 oc < 11 El1 oc, + II E2 11 oc -< C(II Tl1 ||r + 11 T2 11X0 + 11 RE, IIJ). a 

The shortcoming of this general result is that we do not have bounds on the last 
term in (3.8). Before we prove a more practical result, let us examine what this term 
represents. In most schemes, L1 will be a consistent approximation to a first-order 
differential operator, say 

(3.10a) g(x) d + h (x), 
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and BO, B1 will be consistent approximations to the boundary conditions 

(3.10b) b d + boo, 

(3.10c) bl dx + blo. 

Taking liberties with notation, the error E1, recall (2.20a,b), can be written as 
rx 

fl T1dx. 

Applying (3.10a,b,c) to this expression yields 

(3.11a) g(x) T1 + h (x) T1 dx, 

(3.11b) bol(Tjo 

(3.11c) bll(Tl)N + blof T1dx. 

Clearly, all terms can be bounded by CIITllI. Tikhonov and Samarskil [23] remark 
that their result illustrates the global nature of the error. Expressions (3.11a,b,c) 
show that there is both a global and a local component to the error if g(x) 0 0. 

Corollary 3.3 will show that the heuristic argument developed above is correct. 

COROLLARY 3.3. Let the discrete boundary value problem satisfy all the conditions of 
Theorem 3.2. Further, let Bo, L1, B1 be consistent, three-point difference approxima- 
tions: 

(3.12a) (BoV)o = aovo + /ov, + yOv2, 

(3.12b) (L,V)i = aivi-, + j3ivi + yivi+1, i = 1,..., N - 1, 

(3.12c) (BjV) N =aNVN-2 + /3NVN-1 + YNVN 

to boo + bol d/dx, a(x)d/dx + b(x), and blo + b11 d/dx, respectively; let 

(3.13) max { 1yiAi+l |1, I aJAi 1} < C, i = 1, ... ,N - 1; 

and let max{ IYOA21, aA0l1I, IYNANI IJaNAN-1I} < C. Then, 

(3.14) IIY- V |00 Ca. 

Proof. Theorem 3.2 and Lemma 3.1 yield the result 

|| E 1j oo = jj Y- V Jj oo < CYmax + CI| RE, 11 j , 

so it is this last term we need to estimate. Looking at (3.12b), we have 

(REl)i = (a, + Pi + yi)(El)i + [yiAi+?(T1),+- ai-i(Tl),]A 

and, consequently, 

I(RE1) i<Ji + Pi + yi| JE1IJ. + 2 max{1yiyi+l1, IaiA I 1 TiIIx,. 

Clearly, consistency requires that l(ai + /Pi + y,) I < C for all meshes with A max AO. 
From Lemma 2.2, we have 

11 E1 | 0 < Cjl T1j llo; 
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thus, 

If (REJ) i I -< C|| T 1 || 

The boundary conditions (3.12a,c) are handled in a similar fashion. Coupled with 
Lemma 3.1, we now have 

II E II X < CYmtx. 

Condition (3.13) is, at worst, a constraint on the local mesh ratio. However, if we 
look at the difference scheme (1.4), we note that 

Ly1A1?~j= a(xl) , A Ai [0,1] 
IYZI+ 1 |(x, a+1 A | m0alx{Ila(x) I} x 

and 

I 
aisied 

a(x,) + 
A 

mx a{ (x)I}, 
so that (3.13) is satisfied with no mesh restrictions at all. For the boundary 
conditions, we might use the second-order accurate scheme at x = 1. This yields 

blovN + b11 [p (AN + AN-1 2 
ANl(AN + AuNl) +VN b2 

AN+AN 1 + N2AN+ ANl N] 
ANANl1 N-i AN(AN+ AN.) VN = b12. 

Thus, we have 

l YNlV N I < I blo IZV N + I bil |i,A + i,- < C, YNAN~~blO~AN 
'AbNl ANl1 

AN 
I atNAN- 1 1 < I bl, I _v N +C\- aNAN1~b1'A N+ ANl1 

This also does not require any special restrictions on the mesh. The same thing will 
be true for this boundary condition applied at x = 0. Thus, we have shown that 
Pearson's scheme, if stable for a class of meshes with maxi{lAi} < Av0, will be 
second-order accurate for those same meshes. The same is true for many other 
commonly used difference schemes. 

4. Quasilinear, Second-Order Equations. In this section, we extend the basic result 
for linear boundary value problems to the solution of quasilinear boundary value 
problems. These will be of the form 

(4.1) y"=f(y',y,x), x E (0,1), 

(4.2a) bo ( y(0), Y'(0)) = 0, 

(4.2b) bl(y(1), y'(1)) = 0. 

Throughout we will assume that (4.1) and (4.2a,b) have an isolated solution, see 
Keller and White [13], y(x) E C4[0, 1]. The difference equations approximating this 
boundary value problem will be denoted by 

(4.3) (N(V)) = 0, i = 1,..., N - 1; 
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(4.4a) BoJ(V) = 0; 

(4.4b) B1(V) = 0. 

Together, we write these equations as 

Bo (V) 

(4.5a) N(V) Nh(V)], 
B1(V) 

and once again assuming that y" is approximated by the second divided difference, 
let 

I Bo[(V) 
(4.5b) R (V) = N(V) - D2V N(V) 

o -B,(V) 

The truncation error, T, will be defined in the usual way, 

(4.6) N(Y)= T. 

Stability of the difference scheme for quasilinear problems is a local phenomenon 
(cf. Keller and White [13], Doedel [8]). We will define a cylinder around the solution 
by 

S1(Y,p) = { Vl ||V- Yoo < p, IDOV- Y'll o P 
where DOV is an N-vector consisting of first divided differences and (Y')i= 

Y'(Xi -1/2), i = 1, . . ., N. Stability of the difference scheme (4.3) and (4.4a,b) is taken 
to mean there exists C, and some p > 0, such that 

(4.7) V V- W | < C| N(V) - N(W) |, 

for every V, W E S1(Y, p). With these definitions, we have the following generali- 
zation of Theorem 3.2. 

THEOREM 4.1. Let the difference scheme (4.3) and (4.4a,b) have the following 
properties: 

(i) the difference scheme is stable, in the sense of (4.7), for all meshes in some class 
M with A max <AO?; 

(ii) Nh(V) = D2V + N1(V), where D2 is the second divided difference; and 
(iii) the truncation errors satisfy Eqs. (3.3) and (3.4a,b,c). 

Then, if N(V) = 0, V E S1(Y, p), the error at the mesh points satisfies 

(4.8) ||EIIOO < C [||T1K00 + |T2 11X + 11 R(Y- E) - R(Y) 11XJ], 

where, as before, El is defined in Lemma 2.2, T1 and T2 are defined in Lemma 3.1, 
and R is defined in (4.5b). 

Proof. Let us write the error, E, in the following way: 

E = E1 + E2 

Since E = Y - V, we have the expression 

E2= (Y - E1) - V. 
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By assumption, V E S1(Y, p), and by Lemma 2.2, we can choose AO sufficiently 
small so that Y - E1 E S1(Y, p). Applying the stability bound (4.7) yields 

IIE2 IIoo < C|| N(Y - Ej 11 00 

Because N( Y) = T, where T is the truncation error, we may write 

IIE21100 < CIIN(Y- E1) -N(Y) + TII 0. 
Let us denote the right-hand side as 

F= N(Y- E1) -N(Y) + T. 

Consider the components of this equation. We have for the boundary conditions 

(4.9a) (F)o = Bo(Y - E1) - Bo(Y) + (T2)0, 

(4.9b) (F) N= B1(Y- E1) -1(Y) + (T2) N, 

and for the differential equation, we have 

(F)i-=(D2Y- D2E, + Nj(Y - Ej -D2Y - N(Y)) i + Dl(Tj i + (T2) i 

for i = 1, .. ., N - 1. Recalling the definition of E1, this becomes 

(4.9c) (F)i = (T2) + (N1(Y - E1) -N(Y)) 

Combining (4.9a,b,c), we have 

II E21100 -< C[IIT21100 + ||R(Y - E1)-R(Y) lloo]. 

From Lemma 2.2, we know that IIEl IKI < CIIT, I I, which yields the result: 

I E lloo < C [||T1 ||0 + ||T211|r + ||R( Y-E1)- R (Y) 11X0] * 

This error estimate reduces to (3.8) if R is linear. However, an extra hypothesis is 
required for Theorem 4.1 because it is a local result; that is, we assume that 
V E S1(Y, p). This condition can be removed in many instances by further restrict- 
ing the maximum allowable mesh size, but we will not duplicate the work of Keller 
[14], Doedel [8], Keller and White [13], and others here. 

A result very similar to Corollary 3.3 requires that we look closely at the linearized 
difference equations (4.3) and (4.4a,b). These linear operators are given below: 

(4.10) D V + aN 
(Y)V, 

(4.11a) av (1) v, 

av 
(4.11b) av ( Y) v, 

where the i, jth element of aNJ/aV is a(N1avi. 

COROLLARY 4.2. Let the discrete boundary value problem satisfy the conditions of 
Theorem 4.1. Further, let the linearized, discrete operators aR(Y)/aV be consistent, 
three-point difference approximations to the first-order portion of the linearized boundary 
value problem; let aR/aV be uniformly continuous in S1( p, Y); let 

(4.12) max(.A A C, i = l,5 ...,+N - l; 
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and let 

3BO'A 3BO 3BA "B A __ C ( I?2 2 ' av0 1 aVN N ' avN-2 N1 

Then, 

||Y Vll oo CA2max. 

Proof. The proof proceeds in very much the same way as Corollary 3.3. Theorem 
4.1 and Lemma 3.1 yield the result: 

(4.13) 1E II0 CA2ma + CIIR(Y- E1) - R(Y) 11L. 
To estimate the last term on the right-hand side of (4.13), we write 

R(Y-E1)-R(Y)= 1a 3(Y-sEl)Elds 

Now, we define 

(4.14) [ai(Z),i3(Z),yi(Z)] av (Z)' av (Z), av (Z)]' 

so that we have 

(R(Y - E1) -R(Y 

= -j| (ai(Y - sEl)(Ej),_l + fi(Y - sEl)(E)j + y,(Y - sE,)(El),+1) ds 

for i = 1, .. ., N - 1. Recalling that (El)i = E2= 0 A1(T1)1, we see that 

(R(Y - E1) -R(Y)), 

(af (a(Y-sEl) + Pi(Y-sEl) + ?y(Y-sEl))(El),ds 

f (yi(Y - sE,)Ai+?(Tl)i+l -- ai(Y - sE,)Ai(Tl)i) ds 

for i = 1,..., N - 1. Because the difference operator (4.14) with Z = Y is a 
consistent approximation to a first-order differential operator, and because 
aR(Z)/aV is uniformly continuous on S1(Y, p), we have 

[a,(Y- sEl) + Pi(Y- sEl) + y,(Y- sE)] < C 

for all meshes with A0 sufficiently small. Likewise, we have assumed that 

max {yi(Y)A?i+l, ai(Y)A,I} < C 

so that 

max {Yi(Y- sE)A,+1? , Ia,(Y- sE1)A11} I C 

for all meshes with A0 sufficiently small. The boundary conditions can be handled 
in a similar fashion; thus, from Eq. (4.14), we have 

I R(Y- E1) - R(Y) lloo < C [11 E1l llo + 11 T1ij,o] 5 
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and finally from (4.13), we have 

lEK CA2 11 E Il oo ma 

for all meshes with AO sufficiently small. E 
These results show that the nonlinearity in the boundary value problem (4.1) and 

(4.2a,b) poses no essential difficulty in extending the results of Section 3. 

5. Cell-Centered Schemes. In many fluid mechanics calculations, it is convenient 
to approximate some physical variables at cell-centers rather than at nodes or 
vertices of the mesh. In one dimension, a cell-centered mesh is constructed by 
placing the nodes x1 (> xo) and XN_1 (< xN) on the interval boundaries. Quanti- 
ties of interest are then approximated at xi_112 = 2(xi + x_1), i = 1,..., N. Actu- 
ally, we have been dealing with cell-centered quantities all along; it would just have 
been confusing to point them out as such. For example, all the truncation errors in 
the discussion of first-order systems in Section 2 are cell-centered. In this section, V 
will still denote a vector, but the components may be given as (V)i vi, as before, if 
it is a vertex-centered quantity, or (V)i_172 v_172 if it is a cell-centered quantity. 
In each case, the subscript denotes the variable's association with the mesh point xi 
or the cell-centered point xi1/2. The cell-centered mesh distances will be written as 

{(A1 + A1)=(x.17- 1\-1/2- 2A + Ai-1) = (Xi-112- Xi-3 /2)' 

v1-3/2 Vi-1/2 Vi+l/2 

I I *I *I 
Xi-2 Xi-l xi Xi+I 

FIGURE 5.1 
Portion of a cell-centered mesh. 

We will examine the solution of the linear, second-order boundary value problem 
(1.1) and (1.2a,b). For cell-centered schemes, the usual approximation to y" can be 
explained using Figure 5.1. Assume that the left difference [(v,_1/2 - vi-3/2)/Ai-1/21 
is an accurate representation of y' at x-1, and, similarly, [(v,+1/2 - vi-1/2)/Ai+1/21 
at xi. Now, the difference of these first differences gives us an approximation to y" 
at XI-1/2 

(5.) Vi+1/2-vi1/2 Vi-1/2 
- vi13/2 (5.1) A A Ai-"Vi/22 4 i?1/2 A-/ 

where superscript cc denotes cell-centered. Many people have noted (see [23]) that 
(5.1) is, in general, an inconsistent approximation to the second derivative on a 
nonuniform mesh. That is, 

(DCC 1/2= Y "(X A1+ ?1 2A1?+Al- 
(D2 iY).12 =y 2(xi1/2) + 4Ai +y"(i ) 

(5.2) 
i 

()i+1 + 2Ai+1A1 - 2AI,A-1-1 1 2- 
24Ai Y"(Xi-1/2) +*** 

and the approximation is inconsistent. We will show that some difference schemes 
still yield o(A2) solution errors in spite of this truncation error. 
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We will employ first-order systems, in an unorthodox way, to help us find the 
correct way to analyze these methods. The major complications will arise from the 
0(1) truncation error term in (5.2). Of itself, it is easily treated, but its effect on 
boundary condition approximations and on difference approximations to ay' + by 
will be considerable. 

First, we notice that (just as for the vertex-centered scheme) the cell-centered 
approximation to y" is given by multiplying the matrices Do and D1 together but in 
the reverse order. That is, 

(5.3) (DcV)1/2(DoD1V) i- 1/2 I = 2, .. ., N - 1, 

where Do and D1 are precisely as defined in (2.4a) and (2.11a), except that the first 
and last rows of Do are deleted. 

Consider the solution of the constant-coefficient equation, 

y" + ay' + by = f. 
Written as a first-order system, we can approximate this equation by 

(5.4a) D1V = A1W, 

(5.4b) D1W= -aA1W- b1V+ F, 

where (F), = fi and 

A2 A1 

A1 + A2 A1 + A2 

(5.5) A1 A3 A2 

A2 + A3 A2 + A3 

Replacing V and W with Y and Y' (exact derivative), we get 

(5.6a) D1Y= A1Y' + D1Tl + T2, 

(5.6b) D1Y'=-aA1Y' -bA1Y + F + D1T3+ T4, 

where 

(5.7a) (T1), 1/2= = 2iYi-1/2 

(5.7b) (J2), =- (2A2i+1 + Aj+1A\ + 2A,)y1"' ? 0(A3), 

(5.7c) ()i21/2 = 

(5.7d) (L4), = lI(2Av?1 + 1i1AA + 2A i)(ayi"' + by,") +0(A3). 

We can find appropriate commuting pairs of matrices, 

(5.8) A D1 = DoA, 

which allow us to combine (5.6a,b) into 

(5.9) DODIY + aDoAlY + bAoAlY 
= AoF + D0DlTl + DO(T2+ A1T3 + aJT1) + AO(T4+ aT2). 

Note that (5.9) defines a three-point, cell-centered difference scheme approximating 
this constant-coefficient differential equation. 
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Now we will examine the pointwise error equation implied by (5.9), namely, 

(5.10) DODIE + 
aDOA1E 

+ bAoAjE 
= DoD1T1 + Do(T2 + A1T3 + ak4T1) + Ao(T1 + aT2), 

in order to see how the analysis should proceed in a more general case. In the course 
of this examination, we will point out the purpose of each of the four lemmas in 
Appendix A leading to the main result of this section, Theorem 5.1. (For Appendix 
A, see the supplements section at the end of this issue.) The first question to consider 
is what sort of truncation error can be put in a form similar to (5.9). This question 
will be answered in Lemma A.1. 

The leading term in the truncation error is easily removed by defining 
E = T1 + E1. 

Substituting this into (5.10), we have 

DoD1El + aDOA1El + bAOklEl 

= DO(T2 + A1T3 + aA1Tj) + AO(T4 + aT2) - (aDoAj + bAOA1)T . 

We recognize the last term on the right-hand side of this equation to be -LiT1, 
where L1 is a difference approximation to ay' + by. Rewriting this equation gives us 

(5.11) (DoD1 + L1)El = DO(T2 + A_T3 + aA4Tl) + AO(T4 + aT2) - L1T. 

Note that this error equation has the same form as those encountered in Sections 2 
and 3 if we can rewrite LlTl as DOT5 + T6, where T7 and T6 are O(A2). Lemma A.2 
will derive conditions sufficient for (5.11) to be written as 

(5.12) (DOD1 + L1)El = DoT2 + AoT4 + T6, 

where, in our particular case, T2 = T22 ? A1T3 + aA1T, + T, T4 = T4 + aT2, and T6 
are O(A2). 

The remainder of the proof proceeds exactly like that in Section 3. Let 
(5.13a) El = E2 + E3 

where 
(5.13b) D1E2 =T2 

Lemma A.3 will prove that E2 = O(M2). Substituting (5.13a) into (5.12) yields the 
following equation for E3, 

(DOD1 + L1)E3 = AoT4 + T6- L1E2 
Finally, Lemma A.4 will show that under mild assumptions on L1, we have 
L1E2 = O(M2), and thus stability (plus boundary condition stuff) will yield second- 
order accuracy for these schemes. These four lemmas are proven in Appendix A, but 
in some cases are tedious and ugly and should be passed over except by the most 
resolute readers. 

The main result of this section utilizes the results in Lemmas A.2-A.4. This 
theorem corresponds to Corollary 3.3 for vertex-centered meshes. The discrete 
boundary conditions will be written as 

(5.14a) BOV= a1v172 + 131v32 + YlV512, 
and 
(5.14b) B1V = aNVN-5/2 + INVN-3/2 + YNVN-1/2 
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The discrete approximation to the differential equation is given by 

(5.15) ([DOD1 + L1]v)i112 = (F)i_112, i = 2,...,N- 1, 

where (F)i 1/2 may stand for a linear combination of the function f(x) evaluated 
at certain points. 

THEOREM 5.1. Let the difference scheme (5.14a,b) and (5.15) satisfy the hypotheses 
of Lemmas A.2 and A.4 and be stable for all meshes in some class M. Further, let the 
difference scheme have the following properties: 

(i) the truncation error for the differential equation approximation (5.15) has the 
form 

(5.16) (DOD1 + L1)Y = F + DOD1T1 + DOT2 + T3 

where T1 T2 T3 are all 0(A2); 

(ii) the truncation error for the boundary condition approximations has the form, 

(5.17a) B(Y - T) = b2+ (T3)1/25 

(5.17b) B1(Y - T1) = b12 + (T3)N-1/25 

where ( T3)1/2 and (T3)N-1/2 are 0(A2); and 
(iii) the discrete boundary conditions satisfy 

(5.18a) la1 + /31 + Y11, 1A1/2a1 1A3/2Y71 < C, 

(5.18b) IAN + AN + YNIA IAN-3/2aNI| IAN-1/2YN| < C. 

Then, 

|| Y-_ V || 00 CA2max 

for all meshes in M. 

Proof. From (5.16), we can derive the pointwise error equation for the differential 
equation, 

(DOD1 + L1)E = DOD1T1 + DOT2 + T3. 

Let E = T1 + E1, and we get 

(DOD1 + L1)El = DoT2 + T3 - L1T1. 

However, Lemma A.2 allows us to write 

LIT = DOT, -T6 

where T1, 16 = O(A2 ). Defining T2 - 21 = we have 

(DOD1 + L1)E1 = DT2 +(T3 +6) 

Let E1 = E2 + E3, where E2 is defined in Lemma A.3; then 

(DOD1 + L1)E3 = T3 + 6- L1E2 

Finally, Lemma A.4 shows that L1E2 = O(A2); thus we can write 

(5.19) ([DoD1 + L1]E3)i112 = 
(T3)i1/22, i = 2 ...,N N-1 

where (T3)i 1/2 = (T3 + T;6 - LIE2)i-1/2 
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The pointwise error equations for the boundary conditions are 

B0E = BOTI +(T3)1/29 B1E = BIT, +(T3)N-1/2 

Substituting E = T1 + E2 + E3 (unraveling the substitutions made for the discrete 
differential equations), we have 

BoE3 = (T3)1/2 - BoE2 B1J3 = ( T)N-1/2 -B1E2- 

Property (iii) in the hypothesis is sufficient (see the proof of Lemma A.4) to show 
that 

|B0E2 I B1E21 C/maxL 

Thus, we define 

(T3)1/2 = (T3)1/2- BoE2 (T3)N-1/2= (T3)N-1/2 -B1E2 

and we know that 

lIT3l100 s CA2max. 
Pulling all this together, we have 

BoE3= (T3)1/29 

([DOD, + L1]E3)i_112 = (TA3),1/2, i = 2,..., N - 1, 

B1E3 = M)N-112 

and stability of the difference scheme yields 

IIE3||II/ max. 

The error is given by 

E = Y-V= V 1 + E2 + E3, 

where we already know that T1, E2 are o(A2), So 

||lY- V lloo _< CA2 a x.O 

This theorem points out that the boundary conditions for cell-centered schemes 
must be handled carefully in order to preserve second-order accuracy in the solution. 
For purely Dirichlet boundary conditions (bo1 = bl = 0), the condition that 

Bj(Y - TI) - bi2 = ?(A2) 

will not alter the 'usual' approximation because BiT1 = O(A2). However, for mixed 
boundary conditions (bo1 # 0 or b#l * 0), failure to satisfy this condition will result 
in a solution that is first-order accurate. As an example, we will derive the correct 
boundary conditions at x = 0 for the difference scheme (5.4a,b). Recall from (5.7a) 
that (Tl)i-172 = 8Ai/1 1/2 Thus, we have 

1 ( Y1/2 - sA\2Y/2) + 11( Y312 (Y32) + Y52 - s A3 y2) -)bo2 = O(A2). 

Expanding in Taylor series about x = 0 gives us 

(a1 + pi + Y1)Yi +(-A2 1a1 + 12/ A31 + [12A2 + A 3/2]Y7)Yi 

+?( A 257/2 ) y1Yf' = boo y + bol0y0( A2). 
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A discrete boundary condition satisfying this equation is 

l ?/ A2v1112 1 [3!2 - 
V1172~ 

(5.20a) bo [ A2 +2 /+b011 A7 ]-bO2 

At x = 1, we have a corresponding condition 

(5.20b) b0 [X-1 N-112 N A NVN-32] [VN-12 VN-32 
(5.20 [ Abl+ N + bl b12. 

Numerical evidence leads us to believe that if property (iii) in Theorem 5.1 is 
violated, then the solution will not be second-order accurate. That is, this is a 
genuine constraint and not an artifact of the proof. 

6. Summary. We have shown that most reasonable, vertex-centered difference 
schemes for linear and quasilinear boundary value problems yield second-order 
accurate solutions on nonuniform meshes. This result is derived in spite of the fact 
that the truncation error for these compact schemes is only first-order. Each of these 
results can be extended to systems of second-order equations without substantial 
difficulty. 

The numerical results shown in, Figures 6.1-6.4, following, are solutions to the 
boundary value problem 

(6.1) (3x + 1)2y" + 9y' + 9[ (3x + 1)2 - l]y =0, 

(6.2) y'(0), y(l) given. 

10-5 - 

SLOPE IS 218 

10-4 

oX 1-3-X 

L io, . 

1 0? 

100 

10? lo- 10 0-2 io-3 

hiAX STEP-SIZE 

FIGURE 6.1 
First-order system. 
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i0-_ 
SLOPE IS 2.19 

10 

10-1 

100 

101 -9, I , , , , 

10? 10-, 10-2 10-3 

MAX STEP-SIZE 

FIGuRE 6.2 

Pearson 's scheme. 

In each figure, the differential equation is approximated on 700 random meshes 
(N - 1 points placed in (0,1) at random) and the maximum error is plotted versus 
the maximum step size; N ranges from 100 to 800. 

Figure 6.1 is the vertex-centered difference scheme derived from a first-order 
system (see (2.14)). The actual solution error for each mesh appears in the upper 
portion of this plot; the straight line " through" these points is the least-squares fit to 
the solution error. In the lower portion of this plot is the truncation error for each 
mesh. The slope of the least-squares fit to these points is 0.78. Figure 6.2 is the 
vertex-centered difference scheme used by Pearson [21] and displays similar informa- 
tion as Figure 6.1. 

In both these figures, the results of Theorem 3.2 and Corollary 3.3 are borne out. 
That is, the truncation error is of lower order than the solution error. For these 
meshes, the local mesh ratio (L^\max/Limm) may be as large as 107, so this is a very 
stringent test. 

We have also shown that some cell-centered schemes for linear boundary value 
problems (quasilinear equations should pose no essential difficulty) yield second- 
order accurate solutions. This is in spite of the fact that these schemes are 
inconsistent. Most important, this result reveals that mixed boundary conditions 
must be approximated carefully in order to preserve this accuracy. 

Figures 6.3 and 6.4 show the solution error in solving (6.1) by the cell-centered 
scheme (5.1) and (A.7). In Figure 6.3, the boundary conditions are approximated 
correctly using (5.20a,b), and the solution error is second order. In Figure 6.4, the 



SECOND-ORDER BOUNDARY VALUE PROBLEMS ON NONUNIFORM MESHES 533 
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FIGURE 6.3 
Correct cell-centered boundary conditions. 
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FIGuRE 6.4 

Second-ordercell-centere bounaroniios 



534 THOMAS A. MANTEUFFEL AND ANDREW B. WHITE, JR. 

boundary conditions are approximated correct to second order: 

BOY = booy(O) + boly'(0) + O(A2), 

B1Y = bloy(l) + blly'(1) + o(A2), 

but they violate property (ii) of Theorem 5.1. Here, the solution error has degraded 
to first order, although it still remains of higher order than the truncation error. 

Motivated by the elimination of auxiliary unknowns in first-order systems, we 
have developed mathematical tools that, together with stability arguments, yield 
better estimates of accuracy. Our work has shown the limitations of the standard 
stability-consistency arguments when applied to nonuniform meshes. On the other 
hand, these results can also be obtained by combining stability with summation by 
parts; see, e.g., Kreiss et al. [16]. In addition, one should note the alternative 
approach of Grigorieff [9] utilizing stability and consistency with respect to a 
Spijker norm. 

The reduction process described in Section 2 provides an efficient computational 
algorithm (see Manteuffel and White [19]). In addition, the concept of pairwise 
commuting matrices can be used to extend this analysis to higher-order differential 
equations. These results will appear in a subsequent paper. 

Finally, it is easy to see how to extend these results to separable difference 
schemes on separable meshes. For example, consider the solution of 'the heat 
equation 

(6.3) ut= u 

on the grid (xi, tk). A Crank-Nicolson scheme for approximating (6.3) is 

( LV)_ -i -VA - 2(D2Vk + D2Vkl) i = ?, 
(hV<r Atk 2 2 2 

where D2 is the second divided difference (1.3a), and 

vk = (V k k ... vk )T 

In order to show that the error is second order, we follow the prescription given in 
Section 3. 

Let 

(6.4) (Elk) (A 3 /j)3U.xxx(X-/ tk), 
(=1 

and E k = k + E2k The resulting equation for E2 is 

(L E2) 
k 

()k_( 1 ),(1 ) h A = (T2)i A~~Ltk 

where T2 = m + At 2.). Clearly, if the time-difference operator applied to El 
is O(A2), then stability will yield the desired result. Substituting from (6.4) yields 

(_El )-i_(El_)_i 1 i 3[ Uxxx(Xj-1/2, tk) - 
UXXX(Xj-112 tk-) 1 

?Atk -Atk 
J 

j=l 
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Thus, if the exact solution is sufficiently smooth, then 

| (E1) (1 ) i < CA2m A~tk 
mx 

This same argument will work for difference schemes approximating elliptic, hyper- 
bolic, or parabolic equations provided (1) that the solution is smooth, and (2) that 
the difference operators in one direction are not affected by the nonuniform mesh in 
another direction. 
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